Interactions between the inositol 1,4,5-trisphosphate and cyclic AMP signaling pathways regulate larval molting in Drosophila.

نویسندگان

  • K Venkatesh
  • G Siddhartha
  • R Joshi
  • S Patel
  • G Hasan
چکیده

Larval molting in Drosophila, as in other insects, is initiated by the coordinated release of the steroid hormone ecdysone, in response to neural signals, at precise stages during development. In this study we have analyzed, using genetic and molecular methods, the roles played by two major signaling pathways in the regulation of larval molting in Drosophila. Previous studies have shown that mutants for the inositol 1,4,5-trisphosphate receptor gene (itpr) are larval lethals. In addition they exhibit delays in molting that can be rescued by exogenous feeding of 20-hydroxyecdysone. Here we show that mutants for adenylate cyclase (rut) synergize, during larval molting, with itpr mutant alleles, indicating that both cAMP and InsP(3) signaling pathways function in this process. The two pathways act in parallel to affect molting, as judged by phenotypes obtained through expression of dominant negative and dominant active forms of protein kinase A (PKA) in tissues that normally express the InsP(3) receptor. Furthermore, our studies predict the existence of feedback inhibition through protein kinase A on the InsP(3) receptor by increased levels of 20-hydroxyecdysone.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Genetic dissection of itpr gene function reveals a vital requirement in aminergic cells of Drosophila larvae.

Signaling by the second messenger inositol 1,4,5-trisphosphate is thought to affect several developmental and physiological processes. Mutants in the inositol 1,4,5-trisphosphate receptor (itpr) gene of Drosophila exhibit delays in molting while stronger alleles are also larval lethal. In a freshly generated set of EMS alleles for the itpr locus we have sequenced and identified single point mut...

متن کامل

Regulation of IP3 receptors by cyclic AMP

Ca2+ and cAMP are ubiquitous intracellular messengers and interactions between them are commonplace. Here the effects of cAMP on inositol 1,4,5-trisphosphate receptors (IP3Rs) are briefly reviewed. All three subtypes of IP3R are phosphorylated by cAMP-dependent protein kinase (PKA). This potentiates IP3-evoked Ca2+ release through IP3R1 and IP3R2, but probably has little effect on IP3R3. In add...

متن کامل

Disruption of the IP3 receptor gene of Drosophila affects larval metamorphosis and ecdysone release

BACKGROUND The inositol 1,4,5-trisphosphate (IP3) receptor is an intracellular calcium channel that couples cell membrane receptors, via the second messenger IP3, to calcium signal transduction pathways within many types of cells. IP3 receptor function has been implicated in development, but the physiological processes affected by its function have yet to be elucidated. In order to identify the...

متن کامل

InsP3Receptor Is Essential for Growth and Differentiation but Not for Vision in Drosophila

Phospholipase C (PLC) is the focal point for two major signal transduction pathways: one initiated by G protein-coupled receptors and the other by tyrosine kinase receptors. Active PLC hydrolyzes phosphatidylinositol bisphosphate (PIP2) into the two second messengers inositol 1,4,5-trisphosphate (InsP3) and diacyl glycerol (DAG). DAG activates protein kinase C, and InsP3 mobilizes calcium from ...

متن کامل

Protein kinase A and two phosphatases are components of the inositol 1,4,5-trisphosphate receptor macromolecular signaling complex.

The inositol 1,4,5-trisphosphate receptor (IP3R) is a ubiquitously expressed intracellular calcium (Ca(2+)) release channel on the endoplasmic reticulum. IP3Rs play key roles in controlling Ca(2+) signals that activate numerous cellular functions including T cell activation, neurotransmitter release, oocyte fertilization and apoptosis. There are three forms of IP3R, all of which are ligand-gate...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Genetics

دوره 158 1  شماره 

صفحات  -

تاریخ انتشار 2001